skip to main content


Search for: All records

Creators/Authors contains: "Sivadas, N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We analyze the drivers, distribution, and properties of the relativistic electron precipitation (REP) detected near midnight by the Polar Orbiting Environmental Satellites (POES) and Meteorological Operational (MetOp) satellites, critical for understanding radiation belt losses and nightside atmospheric energy input. REP is either driven by wave‐particle interactions (isolated precipitation within the outer radiation belt), or current sheet scattering (CSS; precipitation with energy dispersion), or a combination of the two. We evaluate the L‐MLT distribution for the identified REP events in which only one process evidently drove the precipitation (∼10% of the REP near midnight). We show that the two mechanisms coexist and drive precipitation in a broadL‐shell range (4–7). However, wave‐driven REP was also observed atL < 4, whereas CSS‐driven REP was also detected atL > 7. Moreover, we estimate the magnetotail stretching during each REP event using the magnetic field observations from the Geostationary Operational Environmental Satellite (GOES). Both wave‐particle interactions and CSS drive REP in association with a stretched magnetotail, although CSS‐driven REP potentially shows more pronounced stretching. Wave‐driven REP events are localized inLshell and often occur on spatial scales of <0.3 L. Using either proton precipitation (observed by POES/MetOp during wave‐driven REP) as a proxy for electromagnetic ion cyclotron (EMIC) wave activity or wave observations (from GOES and the Van Allen Probes) at the conjugate event location, we find that ∼73% wave‐driven REP events are associated with EMIC waves.

     
    more » « less
  2. Abstract

    The extreme substorm event on 5 April 2010 (THEMIS AL = −2,700 nT, called supersubstorm) was investigated to examine its driving processes, the aurora current system responsible for the supersubstorm, and the magnetosphere‐ionosphere‐thermosphere (M‐I‐T) responses. An interplanetary shock created shock aurora, but the shock was not a direct driver of the supersubstorm onset. Instead, the shock with a large southward IMF strengthened the growth phase with substantially larger ionosphere currents, more rapid equatorward motion of the auroral oval, larger ionosphere conductance, and more elevated magnetotail pressure than those for the growth phase of classical substorms. The auroral brightening at the supersubstorm onset was small, but the expansion phase had multistep enhancements of unusually large auroral brightenings and electrojets. The largest activity was an extremely large poleward boundary intensification (PBI) and subsequent auroral streamer, which started ~20 min after the substorm auroral onset during a steady southward IMFBzand elevated dynamic pressure. Those were associated with a substorm current wedge (SCW), plasma sheet flow, relativistic particle injection and precipitation down to the D‐region, total electron content (TEC), conductance, and neutral wind in the thermosphere, all of which were unusually large compared to classical substorms. The SCW did not extend over the entire nightside auroral activity but was localized azimuthally to a few 100 km in the ionosphere around the PBI and streamer. These results reveal the importance of localized magnetotail reconnection for releasing large energy accumulation that can affect geosynchronous satellites and produce the extreme M‐I‐T responses.

     
    more » « less